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Abstract

In order to clarify the developmental mechanism of the local plastic buckling and the interaction between axial wave
and buckling deformation in an axially impacted slender-bar, the non-linear dynamic equations in the incremental form
are derived and solved by use of the finite difference method, with the axial wave front treated as a moving boundary.
The initial local-buckling deflection given by the characteristic-value analysis is used as the initial condition of the solu-
tion of the equations, instead of the initial imperfection that is assumed in literatures. It is found that the initial buckling
deflection with one half-wave, occurring near the impacted end, develops into the higher post-buckling mode with sev-
eral half-waves, as the axial compression waves propagate forward. The numerical results show that no strain reversal
occurs at the early stage of post-buckling process, and the solution corresponding to the tangent-modulus theory is
valid for the dynamic plastic post-buckling response of the bar at this stage. The theoretical results are in good agree-
ment with the experimental results reported in the literature.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The plastic buckling problem of straight bars subjected to an axial dynamic loading has been studied
extensively (Abrahamson and Goodier, 1966; Hayashi and Sano, 1972a; Lee, 1981; Lindberg and Florence,
1983; Simitses, 1987, 1989; Jones, 1989; Karagiozova and Jones, 1996; Lepik, 2001). For this problem, the
earlier analyses usually assumed that the bar is instantaneously brought to the state of uniform compression
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stress (Hayashi and Sano, 1972a; Lindberg and Florence, 1983). Recently, Karagiozova and Jones (1996),
and Lepik (2001) investigated, respectively, the influence of stress wave propagation on the elastic-plastic
dynamic buckling of the bar under axial impact.

In the analysis for the non-linear dynamic response of the buckling bar, it is usually assumed that the
unstressed bar has an initial imperfection, in the shape of a half sine wave, distributed along the entire
bar (Hayashi and Sano, 1972a,b). In the calculation of integrating the motion equations, the imperfection
is used as the initial condition of the solution of the equations. However, the test results (Hayashi and Sano,
1972b) of axial impact buckling for the slender bar show that, when the impact velocity is high, the local
buckling occurs near the impact end at an early stage of the impact process. The same situation is illustrated
by a sequence of high speed photographs for the dynamic buckling of an aluminum alloy strip under axial
impact (Lindberg and Florence, 1983; see Fig. 2.15 in Lindberg and Florence, 1983).

In Wang and Tian (2002, 2003a,b, 2005), the twin-characteristic-parameter method was presented to
clarify the mechanism of buckling initiation and obtain the critical conditions for the geometrically perfect
bar as well as the cylindrical shell subjected to an axial dynamic loading. From the analysis by use of the
twin-characteristic-parameter method, it is found that, when a geometrically perfect slender-bar is subjected
to the axial impact with a high velocity, an initial local-buckling will occur, near the impact end, at the early
stage of the process for the axial compression wave to propagate, from the impact end, towards another end
of the bar. Assuming that the process of the impact for the bar is initiated at the instant ¢ = 0, we define the
instant i = f.., at which an infinitesimal buckling deflection occurs near the impact end, as the critical buck-
ling instant. In the duration from ¢ = 0 to ¢ = ¢, the axial compression wave has traveled the distance L., in
the bar.We define L, as the critical buckling length. At the critical instant ¢ = ¢, the infinitesimal buckling
deflection is limited to the region of the length L., near the impact end, and the part of the bar before the
front of the compression wave remains undisturbed. The critical buckling instant 7., and the mode of the
infinitesimal buckling deflection can be obtained from the analysis for the critical state by use of
twin-characteristic-parameter method (Wang and Tian, 2002, 2003a, in press).

In order to clarify the developmental mechanism of the local buckling deformation in the axially im-
pacted slender-bar, it is quite natural that the initial local-buckling deflection is used as the initial condition
of the solution for the dynamic post-buckling response, instead of the initial imperfection distributed along
the entire bar. In this way, the elastic dynamic post-buckling response of the slender bar subjected to the
axial impact was investigated (Wang and Tian, in press). The theoretical results are in good agreement with
the experimental results reported (Lindberg and Florence, 1983; Hayashi and Sano, 1972b) respectively.
For the aluminum alloy strip (Lindberg and Florence, 1983), the length of the first half-wave of the
post-buckling mode, predicted by the theoretical analysis of Wang and Tian (in press), is equal to
11.2 mm, and is close to the experimental value of 11.9 mm given by Lindberg and Florence (1983). For
the Ni—Cr steel bar impacted axially by a striking mass with the velocity vy = 6.3 m/s, the analysis of Wang
and Tian (in press) gives that, at the post-buckling stage, the maximum bending moment appears at the
position x/L = 0.05238, where L is the length of the bar and x the axial coordinate. In comparison, the
experimental result of Hayashi and Sano (1972b) is that x/L = 0.05.

In this paper, in order to clarify the developmental mechanism of the local plastic buckling and the inter-
action between axial wave and buckling deformation in the bar subjected to the axial impact against a rigid
wall, the non-linear dynamic equations in the incremental form are derived and solved by use of the finite
difference method, with the axial wave front treated as a moving boundary. The initial plastic buckling
mode with a small amplitude parameter, obtained by use of the twin-characteristic-parameter solution,
is applied as the initial condition of the solution of the non-linear dynamic equations.

In the present analysis, it is assume that the bar is made of the linear strain-hardening material. The tan-
gent-modulus theory and the double-modulus theory are applied, respectively, for describing the relation
between the bending-moment and curvature in the dynamic plastic post-buckling deformation. In the rela-
tion between the axial stress-increment and strain-increment, both the loading case due to compressive-
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wave propagation and the unloading case induced by the buckling deformation are taken into account. The
validity of the theory is examined carefully by the numerical investigation. The numerical results show that
no strain reversal occurs at the early stage of post-buckling process, and the solution corresponding to the
tangent-modulus theory is valid for the dynamic plastic post-buckling response of the bar at this stage. The
theoretical results are in good agreement with the experimental results reported by Lindberg and Florence
(1983).

2. Initial compression wave in the bar impacted against a rigid wall

As shown in Fig. 1, the straight bar with the length L is originally stress-free and moving, at the velocity
vg, toward a rigid wall. On impact the left end of the bar immediately come to rest. When the stress at the
cross-section of the impacted end exceeds the yield stress g, of the material, a plastic compression wave as
well as an elastic compression wave is produced by the impact. The elastic and plastic waves travels towards
the free end of the bar, at the velocities ¢y and ¢; respectively. It is assumed that the bar is made of the linear
strain-hardening material, of which Young’s modulus is E, the strain-hardening modulus E, and the density
p. The elastic wave velocity ¢y and the plastic wave velocity ¢, are calculated by use of the following equa-
tions, respectively.

Co = Ea ¢ = E (21)
p p

Assuming that the process of the impact is initiated at the instant ¢ = 0, after a small interval ¢ the elastic
wave and the plastic wave have passed the distances L. and L, respectively in the bar.

Le = ¢ot, Lp =cit (22)

At this stage, L. is a small quantity in comparison with the value of the length L of the bar, and no buck-
ling deformation takes place in the bar. The axial strain of the bar, produced by the axial compression
waves, can be approximately calculated according to the following equations:
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Fig. 1. Axial stress in the bar at the initial stage of impact.
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__ W [ JE_q)o
& = Cl+< Z l)E (0 <x<ept)

o, (2.3a—c)
= — = t<x<cpt
&, E (c1 x < cot)
& =0 (ct<x<L)
The corresponding axial stress at the cross-section of the bar is expressed as
E
QIS (Y 0<x<et
o) ‘e ( z |9 (0 <x<ept)
(2.4a—)

0i2> =—0, (c1t <x<cot)
cP =0 (cot<x<L)

In Egs. (2.4a—c), the superscripts (1), (2) and (3) in the stress symbol ¢, are corresponding to the three re-
gions 0 < x <c¢t, ¢t < x < ¢pt, and ¢pt < x < L, respectively.

3. Critical buckling time and initial buckling mode

As shown in Fig. 1, the bar is subjected to the axial impact against the rigid wall, and the elastic and
plastic compression waves are produced by the impact. If the bar is slender, an infinitesimal initial buckling
deflection will occur at the early stage of the process for the compression waves to propagate towards the
free end of the bar. The critical length L., to which the infinitesimal initial buckling deflection is confined, is
equal to the length of the part covered by the elastic compression wave at the critical instant ¢ = ¢, that is,
L. = coter. At the instant ¢ = ¢, the part of the bar, before the front of the elastic compression wave, re-
mains undisturbed.

When the impact velocity v, is given, the axial stress in the bar is calculated by use of Egs. (2.4a—c). From
Eq. (5.4) in Wang and Tian (2003a), the expressions for the critical length L., and the critical time ¢., are
written as

f = — (3.1a,b)

In Eq. (3.1a), r is the gyration radius of the cross-section of the bar and A denotes the critical load
parameter. On the assumption that no strain reversal occurs in the process of buckling initiation, E is equal
to the strain-hardening modulus E,, which is corresponding to the tangent-modulus theory. When the
double-modulus theory is applied to the analysis, E is taken as the reduced modulus E, (Bleich, 1952).

The critical load parameter A, the inertial exponential-parameter 2 in the following Eq. (3.3), and the
initial dynamic buckling modes are calculated by the characteristic-value analysis presented in Wang
and Tian (2003a) for the plastic dynamic buckling of the straight bar. In the analysis of Wang and Tian
(2003a), it is assumed that the loaded end of the bar is simply supported in the buckling process. According
the buckling deformation of specimens in the experiment (see Fig. 2.23; Lindberg and Florence, 1983), in
the present analysis we assume that, in the process of buckling occurrence, the impact end of the bar re-
mains perpendicular to the surface of the rigid wall and there is no slide between the impact end and
the rigid wall. In this case, the clamp condition is applied to the impact end, that is,
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WO(@T)‘g:oﬁf:l =0, W0,§|;:o,1:1 =0 (3.2)

The lowest values of the parameters 4, Q and the critical buckling time 7., are related to the first dynamic
buckling mode. From the solution of Wang and Tian (2003a), the expression of the dimensionless initial
buckling deflection w, corresponding to the first dynamic buckling mode is written as:

W = — = 5 - ey (x) (3.3)

In Eq. (3.3), 5 is the small amplitude parameter, and other parameters are defined as follows:

c r t
==, F=—\ 1=— (3.4a—c)
Co Lcr tcr

From Egs. (4.3) and (4.4) in Wang and Tian (2003a), the expressions of Y(x) are written as

Y(x) = Dy cos(f,x) + Dy sin(f,x) + D, cos(f,x) + Dgsin(fx) (0 <

X < cltcr>
Y(x) = Cycos(yyx) + Cysin(y;x) + C3 cos(ypx) + Cysin(yox)  (crte < x

< cote) (3.5a,b)
where, the values of the parameters f5;, >, x1 and y, are related to the characteristic parameters A and Q in
terms of the Egs. (4.5), (4.6) and (5.3b) in Wang and Tian (2003a), and the parameters Dy, D,, D3, D4, Cy,
C,, C3 and Cy4 are a set of eight integration constants.

The dynamic buckling mode (3.3) must satisfy the two boundary conditions of Egs. (3.2a,b) at the im-
pact end, four continuity conditions at the front of the plastic compression wave, two boundary conditions
at the front of the elastic compression wave, and one supplementary restraint condition obtained from the
criterion of energy conservation in the process of the dynamic buckling initiation (Wang and Tian, 2003a)
(see Egs. (2.17a-d), (2.15a,b) and (3.17) in Wang and Tian (2003a), respectively). For the supplementary
restraint condition at compression wave fronts, more careful derivation by use of Eq. (3.14) in Wang
and Tian (2003a) gives the equations:

1—
er- (ol — o3l .., +§E"200 “[w

2
O,XX]x:cot

=0 (3.6)
In Eq. (3.6), &, is the increment of the axial strain due to buckling deformation. Assuming that no axial
unloading occurs in the transient process of buckling initiation, from Eq. (3.6) we obtain

Ex1 |x:clt = Oa WO,)oc|x:C0[ =0 (3.73, b)

In the present analysis we use the supplementary restraint condition (3.7b) instead of Eq. (3.17) in Wang
and Tian (2003a). The numerical results of examples in the Section 5 of this paper show that difference
caused by this change is small and negligible. By use of the nine restraint conditions as mentioned above,
seven of the eight integration constants Dq, D», D3, D4, C1, C,, C3 and C,, and the characteristic parameters
A and Q can be calculated.

By use of Egs. (2.3a—c), the axial displacement u, of the central line of the bar, at the critical instant
t = t., 1s written as follows:

[E s
Ll():|:< E_1>%—Z—?:|x forogxécll‘cr

|E 5 s 3.8a—c
up = {( E—l)%—g—‘j -cltcr—%(x—cltcr) for ¢ty < x < coler ( )

uy = —voty for cpty <x <L
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4. Dynamic post-buckling equations and their difference solution
4.1. The dynamic post-buckling equations of the bar

If an initial local buckling occurs near the impact end of the bar at the early stage of the process for the
elastic and plastic compression waves to propagate towards the free end, the buckling deformation will de-
velop with the propagation of the compression waves. To simplify the theoretical treatment, the present
analysis is limited to the post-buckling stage at which the elastic compression wave has not arrived at
the free end of the bar. For the slender bar, the effects of shear deformation and rotary inertia are negligible,
and the non-linear dynamic equations of the buckling bar are written as

Oxx — PUy = 0 (41)
M, —A(ow,,),, + pAw,, =0 for 0 < x < ¢ot (4.2)

where o, denotes the average axial stress at the cross-section of the bar in the region 0 < x < ¢ot, M, is the
bending moment, u denotes the total axial-displacement of the center line of the bar after the buckling, and
w is the lateral displacement corresponding to the buckling deformation. The symbol () and ( ;) denote
differentiation with the coordinate x and the time variable ¢ respectively.

Let (', w') denote the displacements at the instant 7, and (u""*", w' * %) denote the displacements at the
instant ¢ + Az, where At denotes the small increment of the time variable z. From the instant ¢ to the instant

t + At, the axial strain increment Ae, of the central line is expressed as

1 21 2

A\e: t+A ot _(r+Ar> __(t) .

& = U] u' + 5 (Ws e (4.3)

Then, the dynamic equations (4.1) and (4.2) at the instant ¢ + Az are written in the forms:
- 1 1

B[ =i 4 00 - SO0 = (442)
T, +A t I t+At t 1 t;rAt 2 1 ¢ 2 t+At t+At
Elw, T —Aq (o, +E{u™ —u, + 3 (W,x ) —3 (w,x> w + pAw' ;7 =0

for 0 < x < co(t+ A1) (4.4b)

Egs. (4.4a,b) is the system of two non-linear dynamic equations with a moving boundary at the elastic com-
pression-wave front, where 4 is the cross-sectional area of the bar, and / the moment of inertia of the cross-
section. The theory on the dynamic plastic post-buckling is very complicated. To simplify the theoretical
treatment, in literatures it is usually assumed that the axial strain rate dominates the extensional strain rate
introduced by the bending motion, therefore, no strain-rate reversal occurs until the buckling deformation
has developed enough (Hayashi and Sano, 1972a; Lindberg and Florence, 1983). On the above-mentioned
assumption, the modulus E in Eq. (4.4b) is identical with the strain-hardening modulus E,. In this case, E in
Eq. (3.1a) is also taken as the modulus E,, that is, the tangent-modulus theory is applied to the calculation
of the critical length L., and the critical time 7... When the double-modulus theory is applied to the calcu-
lation of L, and # in Egs. (3.1a,b), E in Eq. (4.4b) is taken as the reduced modulus E, (Bleich, 1952).
The modulus E in Egs. (4.4a,b) is determined in accordance with the following expressions:

E=E if Ae,>0
E=E, if Ae, <0 and lo'] = o
E=E if As, <0, |d'| <o, and |o.+E-As| <o, (4.5a-d)

- E ’ s .
E=E — (1 —E’) G*A+ % if Ae, <0,|0l| <oy, and |0l +E-Ag| > o
Ex
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In Egs. (4.5a—d), the elastic and plastic loading of the axial stress, due to the propagation of the com-
pression waves towards the free end, and the elastic unloading of the axial stress caused by the buckling
deformation are taken into account. The symbol || denotes the absolute value of the corresponding
quantity. For the convenience of analysis, we introduce the following dimensionless quantities and
variables:

2

L u w L o' X t

ﬁ:_cr_’ w:—, 6;: - —x, 62_7 T=—), (4.63.—6)
ror r r E Le; ter

where ?, is the critical buckling time, and L., the critical buckling length: L. = ¢ot.;. With Egs. (4.6a—¢)
introduced, the governing equations (4.4a,b) are written into the dimensionless forms:
E 1 2] 2
Gt g [ufgm i+ () - 5 () } =0
1 :
it af s s -y () g0 ) Jet] cu=o prosecoa
NS
(4.7a,b)

E E Lo\’ A
o==, K=-— lp:oc(—), A=t (4.8a—)

r ter
The non-linear dynamic equations (4.7a,b) are solved by use of the difference method in the following
section.

4.2. Initial conditions and boundary conditions for the solution of Egqs. (4.7a,b)

The axial displacement u, in Egs. (3.8a—c) and the dimensionless initial buckling deflection wy in Eq. (3.3)
are used as the initial conditions, at the instant ¢ = 7., (that is, the instant T = 1), for the solution of the
dynamic post-buckling equations (4.7a,b), that is,

W|r:1 = V_VO’ 1'_1}7r|1:1 = 1’_V().ra for 0 < é < 1

wlr*l = 07 W,T|f:1 =0 for 1 < é g L/Lcr (493‘C)
L

il == % for 0 << L/Ler (4.10)

The dimensionless axial stress ¢’ at the critical instant 7 = ¢, is calculated by use Egs. (2.4a—) and
(4.6¢).

It is assumed that, at the impact stage before the separation of the impact end from the rigid wall, the
impact end of the bar remains perpendicular to the surface of the rigid wall and there is no slide between the
impact end and the rigid wall. In this case, the boundary conditions at the impact end are written as

u(0,7) =0, w(0,7) =0, wel._,=0 (4.11)

As mentioned at the beginning of this section, the present analysis is limited to the post-buckling defor-
mation stage at which the axial elastic wave has not arrived at the free end. The boundary conditions at the
elastic compression wave front (x = co(t + At) or £ =1+ At) are written as

vo(T + A7) (Lcr)2 _ _

5(57 T)|g’:r+Ar = - o r W(é T)|5:1+Ar = 07 W’€|g:1+m = 0 (41221%)
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4.3. The finite difference solution of Egs. (4.7a,b)

The non-linear differential equations (4.7a,b) are solved by use of the finite difference method and the back-
ward-difference formulas for the time variable 7 are applied to the solution of the equations. In relation to the
reference point (&,7 + Art), as shown in Fig. 2, the difference expressions of the derivatives of the displace-
ments #*4" and w4 with respect to the variable t or &, which appear in Egs. (4.7a,b), are written as follows:

g =L 5 [#(&, T4 At) = 2u(&, 1) + u(é, v — At)]

i (A7)
W = % [W(E, T+ At) — 2w(&, 1) + W(&, T — At)]

' (A7)
Wit = 2175 [@(& + AL T+ At) —a(E - A& 7+ A1)

1

afém _ ™5 [u(é+ AE T+ A1) — 2u(é, v+ At) + u(E — AE T+ A1) g
wng’ = ﬁ [W(E+ A T+ At) — w(E — A&, T+ A7)
W,EEAI — @ [W(E+ A&, T+ At) — 2Ww(&, t+ At) + w(E — AE, T+ A1)]
Wi = (A%)At [W(E + 2A¢, T+ At) — 4w(& + A, T + Ac) + 6W(E, T + A7)

—4(E — AE, T+ AT) + W(E — 2AE, T + A7)

Similarly, the difference expressions of the derivatives of the displacements #’ and w' with respect to the
variable &, which appear in Egs. (4.7a,b), are written as

IV S _
u,é - m [M(é + Aéa T) - u(g - A§7 T)}
1
ﬁfi:f = .3 [ﬁ(é + Afv T) - 21}(57 T) + ’7’(5 - Aé; T)]
(?@ (4.14a-d)
W, = E[W(f + A&, 1) —w(¢ — A, 1)
P w 7) = 2w(&, 1) + w(é — Aé,T

N

E+AET+AT Eg+ AT E-AE T+ AT

&t

ET-AT

Fig. 2. Finite difference grid.
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For the instant ¢ + At (that is, T + At), substituting the expressions (4.13a—g) and (4.14a—d) into Egs.
(4.7a,b) for every reference point (£, T + At) gives a system of no-linear difference equations for the unde-
termined quantities u’ ~ 2(&,, © + A1) and W't (&, 1+ At), where i =1, 2.. .., including all grid points ex-
cept the two points at the boundaries of the region 0 < & < © + At. The iterative procedure is used to solve
the no-linear equation system. The derivatives with respect to the variable & or 7 in the above-mentioned
boundary conditions and the initial conditions are also transformed into the corresponding difference for-
mulas. In the calculation, we take A = Ar, that is, Ax = ¢pAt, and the convergent numerical results are
obtained.

5. Numerical results and discussion

Lindberg and Florence (1983) reported the plastic buckling experiment of 6061-T6 aluminum-alloy bars
to be impacted against a heavy steel slab at the indicated velocities. For a set of bar specimens (Lindberg
and Florence, 1983), the diameter of the cross-section is d = 5.3 mm and the length L =457 mm. From the
experimental data (Lindberg and Florence, 1983), the yield stress of the 6061-T6 aluminum alloy is
g, =309 MPa, Young’s modulus E=67.5 GPa, and the strain-hardening modulus E, = 1.24 GPa. By
use of the theory developed in Sections 24, we have investigated numerically the plastic dynamic buckling
of six specimens, for which the values of the impact velocity vy given by Lindberg and Florence (1983) are
list in Table 1.

In the calculation, the critical buckling time 7., and the initial buckling mode w, are computed by use of
the formulas in Section 3, and the post-buckling displacements # and w are calculated according to the
solution of Egs. (4.7a,b). As mentioned in Sections 3 and 4.1, in Egs. (3.1a) and (4.4b) E is taken as the
strain-hardening modulus E, for the tangent-modulus theory and the reduced modulus E, for the dou-
ble-modulus theory, respectively. Eqs. (4.5a-d) are applied to describing relation between the axial
stress-increment and strain-increment, in which both the loading case due to the propagation of the com-
pression waves and the unloading case caused by the buckling deformation are taken into account.

In Table 1, A is the critical load parameter, related to the first dynamic buckling mode, given by the char-
acteristic-value analysis (Wang and Tian, 2003a). The critical length L’ and the critical time #_are calcu-
lated from the tangent-modulus theory, and L and ¢, from the double-modulus theory. In Table 1,
S _modulus denotes the length of the first half-wave, close to the impact end, in the post-buckling deflection
profile at the instant T = 11, which is calculated by use of the tangent-modulus theory, and S,_odulus 1S the
length of the first half-wave of the post-buckling deflection profile that is calculated by use of the double-
modulus theory. The average values of the first two half-wave lengths, observed in the experiment of
Lindberg and Florence (1983), are also listed in Table 1 and denoted by Sexp.

Table 1
Critical buckling length and half-wave length of post-buckling mode of impacted bars

Specimen. vo (m/s) A Ll (mm) £ (10°%s) L (mm) £ (107°s) Post-buckling half-wavelength (mm)

Sr—modulus St—modulus Scxp (Llndberg and
Florence, 1983)

Bl 104.3 13.03 24.73 4.95 43.55 8.71 28.99 15.80 16.26
B4 53.68 10.64 25.03 5.01 44.05 8.81 34.96 18.48 19.05
B14 52.16 10.60  25.07 5.01 44.16 8.83 35.18 18.55 19.81
B19 51.24 10.57  25.10 5.02 44.21 8.84 35.29 18.64 18.03
B15 44.84 10.40 25.30 5.06 44.57 8.91 36.11 19.09 18.80

BS 38.43 10.22 25.52 5.10 44.96 8.99 36.96 19.93 21.59
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From the data in Table 1, it will be seen that the values of the critical buckling length and the post-buck-
ling half-wavelength computed from the tangent-modulus theory are closer to the experimental results, in
comparison with the values computed from the double-modulus theory. Therefore, in the following we dis-
cuss first the numerical results computed from the tangent-modulus theory, and then outline the results ob-
tained from the double-modulus theory.

5.1. The numerical results computed from the tangent-modulus theory

The values of the critical length L. and the critical time ¢, related to the first dynamic buckling mode,
computed from the tangent-modulus theory, are list in the fourth column and fifth column of Table 1,
respectively. For the bar B4, L! = 25.03 mm, #, = 5.01 x 107% s, and the first dynamic buckling mode cal-
culated by use of Eq. (3.3) is shown in Fig. 3, where the amplitude parameter wy of is taken as 1 = 0.01. At
the instant 7 = 91.4 x 10~ °s, that is t = ¢/¢, = 18.24, the elastic compression wave arrives at the free end.
As mentioned previously, to simplify the analysis, in this paper the numerical investigation is limited to the
dynamic post-buckling stage at which the elastic compression wave has not arrived the free end of the bar.

For the bar B4, the growth and spread of the post-buckling deflection w with the dimensionless time
parameter 7 is shown in Figs. 4 and 5 for n = 0.01. From Figs. 4 and 5, it will be seen that, in the process
of the post-buckling deformation, the buckling deflection near the impact end spreads forward with the
time and develops from the simplest mode with one half-wave into a series of higher post-buckling modes
corresponding to the different post-buckling stages. At the post-buckling stage, the position £ =1 corre-
sponding to front of the half-wave of the initial buckling mode is transformed into the wave-valley of
the next half-wave of the post-buckling mode, and then the half-wave of the post-buckling mode remains
fixed in position and merely grows in amplitude. Therefore, the length S, ,0qus Of the first half-wave of
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Fig. 3. Initial buckling mode of the aluminum-alloy bar B4.
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Fig. 4. Growth and spread of buckling deformation in the bar B4, n = 0.01.
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Fig. 5. Growth and spread of buckling deformation in the bar B4, = 0.01.

the post-buckling mode is shorter than the half wavelength L., of the initial buckling mode. From the data
in Table 1, it will be seen that the values of S,_modulus are close to the half wavelength S.., observed in the
experiment of Lindberg and Florence (1983).

The influence of the amplitude parameter n of the initial buckling deflection wy on the post-buckling
deflection is shown in Fig. 6. From Fig. 6, it will be seen that, at a given instant ¢ = ¢/¢,, the amplitude
of the post-buckling deflection is affected by the parameter 5 to a large extent, but the value of the param-
eter 7 almost has no influence on the waveform of the post-buckling deflection profile. Figs. 4-6 show that,
at the post-buckling stage, the post-buckling deformation is still limited to a very short region near the im-
pact end in comparison with the length of the bar, which is in agreement with the experimental results of
Lindberg and Florence (1983) (see Fig. 2.23 in Lindberg and Florence, 1983).

At the several different instants of the post-buckling stage, the average axial stress at the cross-section of
the bar B4, due to the propagation of the elastic and plastic compression waves, is shown in Figs. 7-9. As
shown in Figs. 7 and 9, the axial compression stress in the region covered by the elastic and plastic com-
pression waves increases with the time until the instant t = 10. In comparison, the increase of the stress in
the region covered by the plastic wave is more obvious. From Figs. 8 and 9, it is found that the perceptible
unloading of the axial compression wave appears in the region near the impacted end after the instant
v =12, and the amplitude of unloading and the length of the unloading region increase with the growth
of he post-buckling deflection.

At the several different stages of the post-buckling process, the maximum bending stress at the cross-sec-
tion of the bar B4, related to the post-buckling deflection, is shown in Fig. 10. From the comparison be-
tween Figs. 9 and 10, it will be seen that the appearance of the bending stress is limited a narrow region
near the impact end, and amplitude of the bending stress is small in comparison with the axial stress at this
stage.
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Fig. 6. The influence of the amplitude parameter on the post-buckling deflection profile, ¢/, = 11.
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Fig. 7. Axial stresses in the bar B4 at post-buckling stages, n = 0.01.
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Fig. 8. Axial stresses in the bar B4 at post-buckling stages, n = 0.01.
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Fig. 9. Axial stresses in the bar B4 at post-buckling stages, n = 0.03.
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Fig. 10. Bending stresses in the bar B4 at post-buckling stages, n = 0.03.
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To examine the validity of the tangent-modulus theory for describing the relation between the bending-
moment and curvature in the dynamic plastic post-buckling deformation, the increments of the average ax-
ial stress and the maximum bending stresses corresponding to the time increment At = 1 at the different
post-buckling stages are calculated, and the comparison is shown in Figs. 11-16. From Figs. 11-13 and
16, it will be seen that, at every cross-section in the region where the bending stress is produced due to
the buckling deformation, the amplitude of the axial compressive-stress increment is larger than the incre-
ment of the maximum bending stress for the post-buckling stage corresponding to the duration from 7 = 1
to 7 = 10. Therefore, at this stage, no strain-rate reversal occurs in the bar and the solution corresponding
to the tangent-modulus theory is valid for the dynamic plastic post-buckling response.
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Fig. 11. The increments of axial stress and bending stress corresponding to the time increment from 7 = 7 to T = 8 for Specimen B4,
with 7 =10.01.
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Fig. 12. The increments of axial stress and bending stress corresponding to the time increment from 7 =7 to T = 8 for Specimen B4,
with 1 =0.01.
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Fig. 13. The increments of axial stress and bending stress corresponding to the time increment from 7 =9 to t = 10 for Specimen B4,
with # =0.01.
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Fig. 14. The increments of axial stress and bending stress corresponding to the time increment from 7 = 11 to = = 12 for Specimen B4 ,
with 7 =0.01.
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Fig. 15. The increments of axial stress and bending stress corresponding to the time increment from t = 13 to © = 14 for Specimen B4,
with # =0.01.
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Fig. 16. The increments of axial stress and bending stress corresponding to the time increment from 7 =9 to t = 10 for Specimen B4,
with 1 = 0.03.

After the instant 7 = 12, the unloading of the axial compression waves appears in the region near the
impact end and the unloading region extends towards the inside of the bar with the growth of the buckling
deformation, as shown in Figs. 14, 15, 8 and 9. In the unloading region, where strain reversal takes place on
the convex side of the bar, the bending stiffness of the bar increases, becoming partly governed by the elastic
modulus E. For this part of the bar, the application of the tangent-modulus theory will result in that the
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computed bending stiffness is smaller than the actual stiffness and the computed buckling deflection is larger
than the actual. Considering that in Egs. (4.5a—d) both loading and unloading cases of the axial stress are
taken into account, the present solution developed by use of the tangent-modulus theory still can be applied
to determining qualitatively the post-buckling behaviors of the bar after strain reversal occurrence.

5.2. The numerical results computed from the double-modulus theory

The values of the critical length L and the critical time #,. related to the first dynamic buckling mode,
computed from the double-modulus theory, are list in the sixth and seventh columns of Table 1, respec-
tively. For the bar B4, L/, = 44.05 mm, #, = 8.81 x 10 ®s, and the elastic compression wave arrives at
the free end when = = ¢/, = 10.37.

For the bar B4, the growth of the buckling deflection w with the time parameter 7, calculated by use of
the double-modulus theory, is illustrated in Fig. 17. From the Figs. 4, 5 and 17, it will be seen that, from the
double-modulus theory, we obtain the same buckling-growth pattern as that computed by use of the tan-
gent-modulus theory.

At the several different instants of the post-buckling stage, the axial stress in the bar B4, computed by use
of the double-modulus theory, is shown in Figs. 18 and 19. Fig. 18 illustrates the same loading phenomenon
of the axial compression waves as that in Figs. 7 and 9, for the earlier stage of the post-buckling process. If
we lengthen the bar, the unloading phenomenon of the axial compression waves will be discovered again
from the calculation by use of the double-modulus theory, as shown in Fig. 19, which appears in the local
region near the impact end after the instant ¢/¢, = 12.

Fig. 17.
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Fig. 18. Axial stress in the bar B4 at post-buckling stages, with the double-modulus theory used and 1 = 0.03.
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Fig. 19. Axial stresses in the bar B4 at post-buckling stages, with the double-modulus theory used and 1 = 0.03.

6. Conclusion

In order to clarify the developmental mechanism of the local plastic buckling and the interaction be-
tween the axial wave and the buckling deformation in an axially impacted slender-bar, the initial plastic
local-buckling deflection, with a small amplitude parameter, obtained by the characteristic-value analysis
is taken as the initial condition of the solution for the dynamic post-buckling response, instead of the initial
imperfection distributed along the entire bar that is assumed in the literatures. The non-linear dynamic
equations in the incremental form are derived and solved by use of the finite difference method, with the
axial wave front treated as a moving boundary.

It is assumed that the bar is made of the linear strain-hardening material. The tangent-modulus theory
and the double-modulus theory are applied, respectively, for describing the relation between the bending-
moment and curvature in the plastic post-buckling deformation. In the relation between the axial stress-
increment and strain-increment, both the loading case due to the compressive-wave propagation and the
unloading case caused by the buckling deformation are taken into account. The validity of the theory is
examined carefully by the numerical investigation.

The investigation results show that the initial buckling deformation with one half-wave, which occurs
near the impact end at the critical instant, develops into the higher post-buckling mode with several
half-waves, as the axial elastic and plastic compression waves propagate forward in the impact process.
The position corresponding to the half-wave front of the initial mode is transformed into the wave-valley
of the next half-wave of the higher post-buckling mode, so that the length of the first half-wave of the post-
buckling mode is shorter than the half-wave length of the initial mode. The post-buckling deformation is
still limited to a very short region near the impact end in comparison with the length of the bar, which is in
agreement with the experimental results of Lindberg and Florence (1983).

At the early stage of the pot-buckling process, the average axial-compression-stress at the cross-section
in the region covered by the elastic and plastic compression waves increases with the propagation of the
compression waves towards the free end. When the post-buckling deflection develops large enough in
the local region near the impact end, the unloading of the axial compression wave appears in this region
and the unloading region extends towards the inside of the bar with the growth of the post-buckling
deformation.

The bending stress produced due to the buckling deformation is limited a narrow region near the impact
end for the slender bar under the axial high-velocity impact. Before the unloading of the axial compression
wave occurs, the increment of the average axial-compression-stress at the cross-section, corresponding to a
time increment Az, exceeds the increment of the maximum bending stress computed from the tangent-
modulus theory, so that no strain reversal occurs in the bar. Therefore, the present solution for the dynamic
post-buckling response, corresponding to the tangent-modulus theory, is valid for the post-buckling stage
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before appearance of the unloading of the compression wave. Considering that, in the non-linear dynamic
equations, both loading and unloading cases of the axial compression waves are taken into account, the
solution still can be applied to determining qualitatively the dynamic post-buckling behaviors of the bar
after appearance of the unloading of the axial compression wave.
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